Циркуляция воды в системе отопления

Система отопления с естественной циркуляцией

Применение такого типа отопления, как система отопления с естественной циркуляцией, является наиболее распространенным для загородных домов и дач. Ее преимущества – доступность, экономичность, простота монтажа и эксплуатации. Создание системы отопления с естественной циркуляцией не требует использования насосов или дополнительного оборудования, источников питания, поскольку гидростатический напор возникает самопроизвольно во время движения теплоносителя.

Многие считают недостатком то, что использование данной системы допустимо лишь в довольно небольших строениях. В частности, радиус системы (горизонтальное расположение) не должен превышать 30 метров. Кроме того, не все предпочитают использовать отопление без насоса, поскольку скорость включения сети также является достаточно низкой.

  • Преимущества системы с естественной циркуляцией
  • Как работает данная система?
  • Принцип построения отопительной системы с естественной циркуляцией
  • Двухтрубная отопительная система с естественной циркуляцией теплоносителя
  • Однотрубная система отопления с естественной циркуляцией


Это обусловлено тем, что постоянно происходит изменение температуры и плотности теплоносителя. При этом благодаря такой цикличности происходит равномерное распределение тепла всеми отопительными элементами, входящими в отопление дома с естественной циркуляцией.

Мифы «гравитационки»

Несмотря на то что отопительная техника с каждым годом совершенствуется и дополняется новыми прогрессивными техническими решениями и высокоэффективным оборудованием, системы водяного отопления с естественной циркуляции теплоносителя продолжают занимать весьма существенную долю в теплоснабжении. Они широко и успешно применяются как в индивидуальном жилищном и коттеджном строительстве, так и при сооружении объектов в районах, где электроснабжение либо отсутствует, либо осуществляется с перебоями.

Рис. 2. Пример двухтрубной системы отопления с естественной циркуляцией

Для этого используем пример классической двухтрубной гравитационной системы отопления (рис. 2), со следующими исходными данными: первоначальный объем теплоносителя в системе – 100 л; высота от центра котла до поверхности нагретого теплоносителя в баке Н = 7 м; расстояние от поверхности нагретого теплоносителя в баке до центра радиатора второго яруса h1 = 3 м, расстояние до центра радиатора первого яруса h2 = 6 м.

Температура на выходе из котла – 90 °С, на входе в котел – 70 °C. Действующее циркуляционное давление для радиатора второго яруса можно определить поформуле:

Δp2 = (ρ2ρ1) · g · (Hh1) = (977 – 965) · 9,8 · (7 – 3) = 470,4 Па.

Для радиатора первого яруса оно составит:

Δp1 = (ρ2ρ1) · g · (Hh1) = (977 – 965) · 9,8 · (7 – 6) =117,6 Па.

При более точных расчетах учитывается также остывание воды в трубопроводах.

Миф 1. Трубопроводы должны прокладываться с уклоном по направлению движения теплоносителя. Не спорим, так было бы не плохо, но на практике это требование не всегда удается выполнить. Где-то балка покрытия мешает, где-то потолки устроены в разных уровнях и т.п. Что же будет, если выполнить подающий трубопровод с контруклоном (рис. 3)?

Рис. 3. Пример выполнения верхнего розлива с контруклоном

Если грамотно подойти к решению этого вопроса, то ничего страшного не произойдет. Циркуляционное давление если и снизится, то на ничтожно малую величину (несколько паскалей), за счет паразитного влияния остывающего в верхнем розливе теплоносителя. Воздух из системы придется удалять с помощью проточного воздухосборника и воздухоотводчика. Пример этого устройства показан на рис. 4. Дренажный кран служит для выпуска воздуха в момент заполнения системы теплоносителем. В «крейсерском» режиме этот кран закрыт. Такая система останется полностью работоспособной.

Рис. 4. Пример устройства для выпуска воздуха из верхнего розлива

Миф 2. В системах с естественной циркуляцией охлажденный теплоноситель вверх двигаться не может. Это вовсе не так. Для циркуляционной системы понятие «верха» и «низа» очень условны. Если обратный трубопровод на каком-то участке поднимается, то где-то он на эту же высоту и опускается. То есть гравитационные силы уравновешиваются.Все дело лишь в преодолении дополнительных местных сопротивлений на поворотах и линейных участках трубопровода. Все это, а также возможное остываниетеплоносителя на участках подъема должно учитываться в расчетах. Если система грамотно рассчитана, то схема, представленная на рис. 5, вполне имеет право на существование. Мало того, в начале прошлого века такие схемы достаточно широко применялись, несмотря на свою слабую гидравлическую устойчивость.

Рис. 5. Схема с верхним расположением обратного трубопровода

Миф 3. В гравитационных системах подающий трубопровод должен проходить над всеми ярусами радиаторов. Это тоже совсем не обязательно. Расположение подающего трубопровода с надлежащим уклоном под потолком верхнего этажа или на чердаке позволяет удалять воздух из системы через открытый расширительный бак. Однако проблему удаления воздуха можно решить и с помощью автоматических воздухоотводчиков (рис. 6) или отдельной воздушной линии.

Рис. 6. Схема с нижним расположением подающей линии

Миф 4. При естественной циркуляции теплоносителя радиаторы обязательно должны располагаться выше центра теплогенератора (котла). Это утверждение справедливо только при расположении отопительных приборов в один ярус. При количестве ярусов два и более, радиаторы нижнего яруса можно располагать и ниже котла, что, естественно, должно быть проверено гидравлическим расчетом. В частности, для примера, показанного на рис. 7, при H = 7 м, h1 = 3 м, h2 = 8 м, действующее циркуляционное давление составит:

g · [H · (ρ2ρ1) – h1 · (ρ2ρ1) – h2 · (ρ2ρ3)] = 9,9 · [ 7· (977 – 965) – 3 · (973 – 965) – 6 · (977 – 973)] = 352,8 Па.

Здесь: ρ1 = 965 кг/м 3 – плотность воды при 90 °С; ρ2 = 977 кг/м 3 – плотность воды при 70 °С; ρ3 = 973 кг/м 3 – плотность воды при 80 °С.

Циркуляционного давления вполне достаточно для работоспособности такой системы.

Рис. 7. Однотрубная гравитационная система с расположением радиаторов ниже котла

Миф 5. Гравитационную систему отопления, рассчитанную на водяной теплоноситель, можно безболезненно перевести на незамерзающий теплоноситель. Без расчета такая замена может привести к полному отказу системы отопления. Дело в том, что этилен- и полипропиленгликолевые растворы обладают значительно большей вязкостью, чем вода. Кроме того, удельная теплоемкость этих смесей несколько ниже, чем у воды, что требует, при прочих равных условиях, ускоренной циркуляции теплоносителя. Эти два фактора вместе взятые существенно увеличивают расчетное гидравлическое сопротивление системы, заполненной теплоносителями с низкой температурой замерзания.

Миф 6. В открытый расширительный бак необходимо постоянно доливать теплоноситель, т.к. он интенсивно испаряется. Да, это действительно большое неудобство, но его можно легко устранить. Для этого используется воздушная трубка и гидравлический затвор, устанавливаемый, как правило, ближе к нижней точке системы, рядом с котлом (рис. 8). Такая трубка служит воздушным демпфером между гидравлическим затвором и уровнем теплоносителя в баке, поэтому, чем больше ее диаметр, тем лучше. Тем меньше будет уровень колебаний уровня в бачке гидрозатвора. Некоторые умельцы умудряются закачивать в воздушную трубку азот или инертные газы, тем самым предохраняя систему от проникновения кислорода.

Рис. 8. Воздушная трубка с гидрозатвором

Миф 7. Насос, установленный на байпасе главного стояка, не создаст эффекта циркуляции, т.к. установка запорной арматуры на главном стояке междукотлом и расширительным баком запрещена. Можно поставить насос на байпасе обратной линии, а между врезками насоса установить шаровой кран. Такое решение не очень удобно, т.к. каждый раз перед включением насоса надо не забыть перекрыть кран, а после выключения насоса – открыть. Установка обычного пружинного обратного клапана невозможна из-за его значительного гидравлического сопротивления. Домашние мастера пытаются препарировать обратные клапаны, снимая с них пружинки совсем или устанавливая их «наоборот» (превращая клапан в нормально открытый). Такие переделанные клапаны создадут в системе неповторимые звуковые эффекты из-за постоянного «хлюпанья» с периодом, пропорциональным скорости теплоносителя.Есть гораздо более эффективное решение: на главном стояке между врезками байпаса устанавливается поплавковый обратный клапан для гравитационных систем VT.202 (рис. 9), который скоро появится в ассортименте VALTEC. Поплавок клапана в режиме естественной циркуляции открыт и не мешает движению теплоносителя. При включении насоса на байпасе клапан перекрывает главный стояк, направляя весь поток через байпас с насосом.

Рис. 9. Установка поплавкового нормально отрытого обратного клапана

Водяные системы отопления с естественной циркуляцией окутаны еще многими мифами, которые предлагаем вам развеять самостоятельно:

  • расширительный бак можно врезать только над главным стояком;
  • в таких системах нельзя ставить мембранный расширительныйбак;
  • регулировать тепловой поток от радиаторов в гравитационных системах нельзя;
  • естественная циркуляция не работает в межсезонье;
  • байпасы перед радиаторами в таких системах недопустимы;
  • водяные теплые полы в гравитационных системах работать не будут.

Температура на выходе из котла – 90 °С, на входе в котел – 70 °C. Действующее циркуляционное давление для радиатора второго яруса можно определить поформуле:

Конструкционные особенности системы

Системы отопления с естественной циркуляцией включают в свой состав:

  • отопительный котел, нагревающий воду;
  • подающий трубопровод, «поставляющий» горячую воду к отопительным приборам (радиаторам);
  • обратный трубопровод, по которому вода возвращается в котел;
  • нагревательные приборы — радиаторы, отдающие тепло в окружающую среду;
  • расширительный бачок, предназначенный для компенсации температурного расширения жидкости.

Расширительный бачок предназначен для поддержания постоянного давления в системе отопления, благодаря тому, что он заполняется увеличившимся при нагревании объемом теплоносителя, который затем «отдает» обратно в систему при понижении температуры жидкости.

Отличия работы систем с естественной и принудительной циркуляцией

Отопление с использованием циркуляционного насоса учитывает все недостатки его аналога с естественным движением теплоносителя: в нем можно увеличить протяженность трубопровода, регулировать температурный режим и получить равномерный обогрев всего жилья. Чтобы понять, с чем связаны ее улучшения, нужно рассмотреть работу каждой из них.


Он позволяет расширить возможности естественного отопления, создать несколько вариантов его завязки и упростить устройство. При использовании насоса нет нужды в трубах с большим диаметром, которые необходимы при естественной циркуляции. От этого внешний вид развязки отопления только выигрывает.

Саморегулирующаяся величина циркуляционного напора

Следующим показателем, от которого зависит величина циркуляционного напора, является разница между плотностью протекающей горячей и холодной воды. Следует отметить, что системы с естественным циркулированием теплоносителя относят к саморегулирующимся.

Для проведения эффективной настройки, при изменениях температуры подогрева воды, в такой системе возникает самопроизвольное изменение — увеличивается расход теплоносителя.

Вследствие изменения плотности, в горячей воде будет увеличиваться естественное циркуляционное давление, что приведет к увеличению количества протекающей в системе воды.

Чем больше нагрета в котле вода и чем быстрее она охлаждается в радиаторах, тем скорее она будет циркулировать. Нажмите для увеличения.

Заходя в батареи радиаторов, она будет отдавать им свою теплоту, а плотность ее при этом будет пропорционально повышаться. Чем существеннее разница между плотностью горячей и охлажденной воды, тем большим будет циркуляционный напор во всей системе.

Таким образом, чем больше нагрета в котле вода и чем быстрее она охлаждается в радиаторах, тем скорее она будет циркулировать, «бегать» по трубам. Этот процесс будет замедляться по мере прогревания помещений.

После теплоноситель начнет остывать в батареях меньше, а плотность его уже не так сильно будет отличаться от плотности только что вышедшего потока из котла, поэтому циркуляционный напор будет уменьшаться.

Вода не так быстро «бегает» в трубах, не носится как «угорелая», чтобы обогреть помещения, а медленно и степенно перетекает в них.

И лишь после того, как в помещении температура начнет снижаться, к примеру, из-за резкого похолодания снаружи или же просто долго открытой двери, напор циркулирования начнет повышаться и вода побежит в трубах быстрее, стремясь поскорее выровнять температуру.

Следующим показателем, от которого зависит величина циркуляционного напора, является разница между плотностью протекающей горячей и холодной воды. Следует отметить, что системы с естественным циркулированием теплоносителя относят к саморегулирующимся.

Читайте также:  Способы выполнения перехода с трубы ПНД на металл

Циркуляция воды в системах водяного отопления

В разделе 4.1 показано, что системы отопления с естественной (гравитационной) циркуляцией воды применяются преимущественно в односемейных домах (коттеджах) или небольших малоэтажных зданиях.

Основное применение в настоящее время получили системы с насосной циркуляцией воды.

По способу присоединения циркуляционной системы отопления к источнику теплоснабжения (теплогенератору) и организации гидравлического, циркуляционного режима в ней можно выделить две основные разновидности:

  • насосные системы отопления с зависимым присоединением к источнику теплоснабжения;
  • насосные системы отопления с независимым (гидравлически изолированным) от источника теплоснабжения присоединением.

Отличительной особенностью систем с зависимым присоединением является общий с источником теплоснабжения гидравлический режим, устанавливаемый и управляемый, как правило, на источнике теплоснабжения — котельной, РТС, ТЭЦ. В этом случае циркуляция воды в системе отопления и подпитка ее осуществляются насосами, установленными на источнике. Подача теплоты в отапливаемое здание производится непосредственно из сети централизованного теплоснабжения по трубопроводам (тепловым сетям), соединяющим источник с системой отопления здания.

В гравитационных системах водяного отопления один цикл — оборот воды в системе — происходит в течение одного часа, а за отопительный период в 213 суток протекает примерно 5115 циклов. В распределительных сетях при замере на коллекторах РТС, КТС один цикл длится 3—4 ч (=1700 циклов в отопительный период), в магистральных тепловых сетях при замере на коллекторах крупных ТЭЦ за счет большого объема воды в тепловых сетях — 6— 15 ч (соответственно =500 циклов).

Изменение температуры горячей воды, подаваемой в систему отопления, достигается путем смешения подаваемой из системы теплоснабжения сетевой воды с температурой ТшХ и обратной воды, выходящей из системы отопления, с температурой ^г2 = Тт2.

На рис. 4.20 показана принципиальная схема применения водоструйного элеватора для получения начальной температуры воды ^г] в системе отопления и создания необходимой циркуля-

Рис. 4.20. Принципиальная схема включения водоструйного элеватора 1 – присоединительный трубопровод подачи сетевой воды из системы теплоснабжения; 2 – коническое сопло; 3 – трубопровод обратной воды системы отопления; 4 – камера смешения; 5 – горловина; 6 – диффузор элеватора; 7 – подающий трубопровод в систему отопления

Из присоединенного к подающей линии тепловой сети трубопроводу /к коническому соплу 2элеватора поступает горячая сетевая вода в количестве (7рс ш и с температурой ТшХ. При выходе с высокой скоростью через сопло 2 сетевой воды вокруг него создается разрежение и возникает эффект эжекции, при этом в камеру смешения элеватора 4через трубопровод 3 подсасывается обратная вода из системы отопления в количестве Сробсм с температурой ^г2, при этом происходит перемешивание этих потоков. В горловине элеватора 5 протекает выравнивание параметров смеси потока воды (7^. В диффузоре 6 благодаря увеличению по ходу потока площади поперечного сечения скорость и гидродинамическое (скоростное) давление падают, но при этом возрастает гидростатическое давление. Благодаря разности гидростатических давлений в конце диффузора 6 и трубопроводе всасывания 3 создается циркуляционный напор для работы системы отопления.

Для описания работы гидроэлеватора в системах отопления составлены следующие уравнения балансов:

По расходу воды:

Из уравнения (4.17) можно получить формулу для расчета температуры горячей воды, поступающей в систему отопления после элеватора tmy

Расход обратной воды об см определяется ее поступлением по

трубопроводу 3 в камеру смешения 4. Температура сетевой воды Тш 1 регулируется на центральном источнике теплоснабжения (КУ, РТС, ТЭЦ) в зависимости от температуры наружного воздуха. При расчетной температуре наружного воздуха для холодного периода года, по которой рассчитывается тепловая мощность систем теплоснабжения, от ТЭЦ по температурному графику теплоснабжения в подающем трубопроводе должна подаваться перегретая вода с температурой Тш1 = +150 °С, а в обратном трубопроводе к ТЭЦ температура воды при этом должна быть не выше ТшоЬ = +70 °С.

При повышении температуры наружного воздуха по графику теплоснабжения от ТЭЦ сетевая вода будет подаваться с более низкой температурой. При температуре наружного воздуха tн = = 0 °С она имеет температуру Тш1 = +70 °С, а обратная при этом должна иметь температуру Ги;об = /ит2 = +40 °С.

Из формулы (4.18) следует, что температура горячей воды для системы отопления будет изменяться по графику теплоснабжения от ТЭЦ для большого числа зданий без учета особенностей формирования теплового режима в каждом здании. Это приводит к перетопам зданий, перерасходам теплоты и поэтому от схем обеспечения циркуляции воды в системах отопления с помощью гидроэлеваторов постепенно отказываются (подробнее см. раздел 6.2).

В своде правил по проектированию и строительству «Проектирование тепловых пунктов. СП 41-101-95» (М.: ГУП ЦПП, 1997) схемы присоединения зависимых систем теплоснабжения рекомендуется выполнять со смесительными насосами, как это показано на рис. 4.21.

От работы насоса 6 обеспечивается приготовление горячей воды для системы отопления, определяемой по формуле (4.18). Насос 6 производит смешение потоков воды и не влияет на циркуляционное давление в системе отопления, которое определяется автоматическим контролем перепада давлений воды в подающем 7и обратном п Р 0Х0 Д я Щ е й по перемычке 3. Температура смеси /ит] понизится и соответственно понизится тепловая мощность системы отопления.

Важной расчетной характеристикой для систем с элеваторным и насосным смешением служит коэффициент подмешивания (для элеватора — коэффициент инжекции), представляющий собой отношение веса подмешиваемой обратной воды к весу рабочей сетевой воды. Его можно также выразить через температуры смешиваемых потоков:

У— ^июб.см / ^1тс.ит — (2^1 _ ^шт) / (*нт1 — Тупо)- (4.19)

Наибольшей гидравлической и тепловой устойчивостью обладают системы отопления, включенные в систему централизованного

теплоснабжения по независимой схеме присоединения, показанной на рис. 4.22.

Рис. 4.22. Принципиальная схема включения независимо присоединенной системы отопления (с циркуляционным насосом) к централизованной системе теплоснабжения

1 – подающий трубопровод от ТЭЦ; 2 – водо-водяной теплообменник (пластинчатый, кожухотрубный); 3 – автоматический клапан регулирования температуры воды в системе отопления; 4 – обратный трубопровод к ТЭЦ; 5 – подающий трубопровод к системе отопления; 6 – терморегуляторы у отопительных приборов в помещениях здания; 7 – обратный трубопровод от системы отопления; 8 -герметичный расширительный бак; 9 – циркуляционный насос с электронным регулированием постоянства перепада давления в подающем и обратном трубопроводах системы отопления; 10 – трубопровод для заполнения и подпитки системы отопления химически подготовленной водой из теплосети; 11 – сдвоенный насос подпитки (один рабочий, второй – резервный); 12 – герметичный бак контроля уровня воды в системе отопления; 13 – вертикальные подающие стояки систем отопления; 14 – вертикальные обратные стояки систем отопления

Подающий трубопровод 1 от теплосети присоединен к водоводяному пластинчатому теплообменнику 2. Через стенки гофрированных пластинчатых каналов теплота от горячей сетевой воды (первичной) Стс ш передается на нагрев (вторичной) воды циркулирующей по системе отопления здания от работы циркуляционного насоса 9. Для экономии электроэнергии рационально применить насос 9 с электронным регулированием частоты вращения электродвигателя по датчикам замера перепада давления в подающем 5 и обратном /трубопроводах системы отопления.

Для экономии теплоты на отопление помещений у нагревательных приборов имеются терморегуляторы 6, изменяющие расход горячей воды в зависимости от контролируемого значения температуры воздуха в помещении. Изменение расхода воды через отопительный прибор с терморегулятором 6 повышает давление воды в подающем трубопроводе 5. Повышение давления воды в трубопроводе 13 перед терморегуляторами 6 отопительных приборов в помещениях, где тепловой режим отвечает условиям теплового комфорта, приведет к возрастанию прохода горячей воды в отопительные приборы в этих помещениях. Соответственно температура воздуха в этих помещениях повысится выше комфортного уровня. Произойдет перегрев помещения и перерасход теплоты. Для избежания перерасхода теплоты и нарушения комфортного теплового режима в помещениях в подающем 5 и обратном /трубопроводах сохраняется постоянное давление благодаря применению насоса 9 с электронным автоматическим регулированием.

Начальную температуру воды /ит1 энергетически рационально снижать с повышением температуры наружного воздуха, что достигается регулятором, контролирующим температуру наружного воздуха и температуру обратной воды Г^об в обратном трубопроводе 4теплосети, воздействием на автоматический клапан 3.

В процессе эксплуатации системы отопления возможны утечки циркулирующей воды. Снижение уровня воды в верхней части системы отопления контролируется датчиком, связанным с автоматическим устройством в герметичном баке 12. При понижении уровня воды в системе отопления ниже контролируемого уровня автоматический регулятор в баке 12 включает в работу один из сдвоенных насосов 11, при работе которого в систему отопления по соединительному трубопроводу /Сбудет добавляться сетевая химически подготовленная вода из системы теплоснабжения. При повышении уровня воды в системе отопления до верхнего контролируемого уровня от регулятора в баке 12 последует команда на остановку подпиточного насоса 11.

Представленная на рис. 4.22 схема циркуляции воды в системе отопления называется двухтрубной с нижней горизонтальной разводкой магистральных подающих 5 и обратных /трубопроводов и вертикальными подающими 13 и обратными 14 стояками.

Вертикальное расположение стояков при нижнем размещении магистральных трубопроводов требует устройства воздухоотводчи-ков в верхних точках стояков. Воздухоотводчики могут быть выполнены в форме спускных кранов ручного управления или это могут быть автоматические воздухоотводчики, рассмотренные на рис. 4.14.

Показанная на рис. 4.22 двухтрубная система отопления с независимым присоединением к тепловым сетям ТЭЦ является гидравлически и теплотехнически наиболее устойчивой, а следовательно, наиболее надежной.

Автоматическое изменение расходов горячей воды через пластинчатый теплообменник 2 и отопительные приборы с терморегуляторами 6 не вызывает гидравлической разрегулировки системы циркуляции и не ведет к перерасходу теплоты на нагрев помещений. Применение в схеме циркуляции горячей воды в системе отопления насосов с электронным регулированием обеспечивает снижение до 60 % годового расхода электроэнергии на работу циркуляционных насосов.

Нагрев воды для независимо присоединенной системы отопления происходит в водо-водяных пластинчатых (или кожухотрубных) теплообменниках, требуемая теплотехническая эффективность которых вычисляется по выражению:

В расчетных условиях холодного периода года (при параметрах Б) от ТЭЦ перегретая вода должна поступать с температурой Тш] = +150 °С. Как правило, из-за тепловых потерь в тепловых сетях к зданиям перегретая вода имеет температуру не выше Тт] = +130 °С, которую и рекомендуется использовать при вычислениях по выражению (4.20). Начальная температура горячей воды в системах отопления жилых и общественных зданий рекомендуется в двухтрубных системах /ит1 = +95 °С, а в однотрубных Сг, = +Ю5 -С.

По нормативным правилам централизованного теплоснабжения от ТЭЦ потребитель обязан возвратить обратную воду с температурой не выше 7″^об = +70 °С.

В зависимо присоединенных системах отопления расчетная температура обратной воды принимается равной = Тко6 = +70 °С. Если потребитель теплоты не выполняет это условие, то на него накладываются значительные штрафные санкции. В этих системах при выборе поверхности отопительного прибора расчетный перепад температур принимается Atwv = 95 — 70 = 25 °С. Условие сохранения рабочего перепада в отопительном приборе равным Д/ш = 95 — 70 = 25 °С нельзя выполнить в независимо присоединенных системах отопления.

Если в теплообменнике 2 (см. схему на рис. 4.22) поступит на нагрев обратная вода после системы отопления с температурой

= 70 °С, то температура горячей воды от системы теплоснабжения на выходе из теплообменника 2 Т об будет выше 70 °С

При равенстве температур 7^ = (ж2 = 70 °С числитель и знаменатель при вычислении по выражению (4.20) будут равны, а численное значение требуемого показателя теплотехнической эффективности будет 0ит = 1, чего невозможно достичь.

Действительная теплотехническая эффективность пластинчатых теплообменников может достигать значений 0>уг = 0,8 — 0,85.

Для избежания штрафных санкций от поставщиков теплоты и выполнения нормативных правил теплоснабжения необходимо рабочий перепад температур в системах отопления с независимым присоединением принимать большим для достижения температуры обратной воды ниже 70 °С (^г2 а (

Читайте также:  Современные шкафы-купе: рассмотрим развернуто

Вычислим по выражению (4.21) возможную температуру обратной воды в принятом температурном режиме независимо присоединенной системы отопления:

  • 130-70
  • 0,8

Подбор требуемой поверхности отопительных приборов в независимо присоединенной системе отопления проводим на температурный перепад:

Д/ит = 95 – 55 = 40 °С.

На рис. 4.23 представлен собранный пластинчатый теплообменник модели «жидкость — жидкость». Теплообменник собирается из тонких штампованных пластин /, закрепленных стяжными болтами 2 между двух массивных торцевых плит 3 и 4. Задняя торцевая плита 4 может сниматься, что позволяет наращивать число тонких пластин 1 и увеличивать поверхность теплообменника. К передней массивной плите 3 присоединяются на резьбе или на фланцах трубопроводы от системы теплоснабжения 5 и нагреваемой жидкости 6.

На рис. 4.24 показана принципиальная схема движения греющей и нагреваемой жидкостей по поверхности пластин по вы-штампованным каналам. Из схемы движения потоков видно: со

Рис. 4.23. Собранный пластинчатый теплообменник «жидкость-жидкость»

1 – тонкие штампованные пластины; 2 – стяжные болты; 3,4 – передняя и задняя массивная плита; 5 – патрубки для присоединения трубопроводов к сети теплоснабжения; 6 – патрубки для присоединения циркуляционных трубопроводов системы отопления

стороны пластины 5 для движения нагреваемой жидкости гофры каналов имеют направление снизу вверх, а со стороны пластины 6 они направляют греющую жидкость сверху вниз. Это создает энергетически наиболее рациональную схему противоточного движения потоков теплообменивающихся жидкостей. Форма каналов гофрированных пластин создает условия для турбулизации потоков жидкостей при скоростях движения по каналам не менее 0,1 м/с.

В табл. 4.3 представлены технические характеристики пластинчатых теплообменников фирмы «Альфа-Лаваль Россия», производимых в Московской обл. Пластинчатые теплообменники малой тепловой производительности выпускаются с паяными соединениями пластин, что делает невозможным их разборку для очистки от накипи и грязи. Очистка производится путем отключения паяных теплообменников от сети и насосной циркуляции и прокачки по внутренним каналам специальных очистительных химических растворов.

Рис. 4.24. Конструктивная схема движения потоков жидкости по каналам гофрированных пластин теплообменника «жидкость-жидкость»

1 – присоединительный патрубок трубопровода подающей сетевой воды; 2 –присоединительный патрубок обратного трубопровода сетевой воды; 3 – присоединительный патрубок подающего трубопровода нагреваемой среды; 4 – присоединительный патрубок трубопровода нагретой среды; 5 – пластина с каналами для прохода нагреваемой жидкости; 6 – пластина с каналами для прохода греющей жидкости

Пластинчатые теплообменники большой производительности делают разборными, по периметру стягиваемых пластин укладывают эластичные прокладки из специального материала ЕРОМ и производят стяжку пакета.

Уплотнитель сохраняет герметичность и эластичность более 10 лет непрерывной работы разборного пластинчатого теплообменника при рабочем давлении 1,6 МПа (16 кгс/см 2 ) и температуре греющей среды 130 °С. При этом теплообменник может многократно разбираться без ущерба для качества уплотняющих прокладок.

По данным табл. 4.3 видно, что путем увеличения числа пластин в теплообменнике можно изменять поверхность теплообменника. В общем случае требуемая поверхность теплообменника вычисляется по формуле:

где Т — требуемый поток теплоты на нагрев жидкости, Вт; К— коэффициент теплопередачи, Вт/(м 2 -°С).

Технические характеристики пластинчатых теплообменников фирмы «Альфа-Лаваль Россия»

Вертикальное расположение стояков при нижнем размещении магистральных трубопроводов требует устройства воздухоотводчи-ков в верхних точках стояков. Воздухоотводчики могут быть выполнены в форме спускных кранов ручного управления или это могут быть автоматические воздухоотводчики, рассмотренные на рис. 4.14.

Естественная циркуляция в системе отопления.

Система отопления с естественной циркуляцией (с использованием гравитационного давления) применяется в частных домах. Основным достоинством такой системы является практически полная независимость от энергоснабжения дома.

Циркуляция воды (теплоносителя) в такой системе обусловлена гравитационным давлением. Условиями возникновения такого давления являются разность температуры воды и взаимное расположение по высоте котла и приборов отопления (батарей и т.п.).

На примере простейшей системы можно понять принцип работы системы. Нагретая котлом вода, как известно, расширяется и ее плотность (удельный вес) уменьшается. Поскольку она становится легче холодной воды, она, как масло, всплывает наверх. Ее место в котле занимает холодная вода и тоже подвергается нагреву.

Разумеется, что этот процесс возможен только в замкнутой системе. В приборах отопления нагретая вода охлаждается, становится тяжелее, и, как следствие, стремится вниз, активно помогая циркуляции. Система всегда стремится к равновесию. Об этом нельзя забывать, рассматривая те или иные варианты.

Таким образом, гравитационное давление зависит от разности температур. А как влияет расстояние по вертикали? На рисунке мы видим, что батарея находится несколько выше котла. Именно в батарее вода охлаждается, становится тяжелее. Поскольку охлажденная вода находится выше нагретой в котле, она естественным образом стремится вниз и вытесняет из котла нагретую воду, занимая ее место.

В других условиях, когда батарея находится на уровне котла (как правило, уровни определяются по центрам котла и батареи), уровень охлажденной воды в батарее находится на том же уровне, что и холодная вода в котле.

Результат очевиден: гравитационное давление снижается, ухудшается и циркуляция. Ровно настолько, чтобы только поддерживать уровень более холодной воды в батарее на уровне воды такой же температуры в котле.

Однако, система еще остается работоспособной, и батарея продолжает отдавать тепло. Котел продолжает работу, охлажденная вода в батарее еще имеет достаточно высокую температуру, и создается эффект полного прогрева батареи.

Но совсем иначе обстоят дела, когда батарея находится ниже котла. Ее температура невысока, а охлажденная вода не может вытеснить горячую воду из котла, поскольку она уже ниже его. Гравитационное давление на грани исчезновения, циркуляция практически исчезает.

Возникает парадоксальная ситуация: батарея холодная, а поднимать температуру котлом уже нельзя, он и без того на грани закипания. Вот такая зависимость гравитационного давления от высоты расположения батарей относительно котла.

А как выглядит система с естественной циркуляцией с математической точки зрения? Вернемся к нашему первому варианту и рассмотрим давление столба воды высотой H в области котла (Pкот) и в области батареи (Pбат).

Давление в области батареи будет опреляться формулой:

Исходя из вышеизложенного можно с уверенностью сказать, что от расположения подающей трубы с горячей водой гравитационное давление очень мало зависит, ведь труба не является основным охлаждающим элементом в системе. Она влияет на давление ровно настолько, насколько она способна охлаждать воду.

Поэтому иногда стояки от котла к верхней подающей трубе вместе с нею утепляют, а от подающей трубы к батарее воду подают трубой увеличенного диаметра без изоляции, что вполне оправдано. Таким образом сохраняют высокую температуру по всей длине подающей горизонтальной трубы и создают охлаждение в подающем стояке.

В результате небольшого охлаждения в трубе средняя точка прибора охлаждения несколько повышается, что ведет к некоторому повышению действующего гравитационного давления в системе с естественной циркуляцией.

Надежность работы естественной циркуляции в системе отопления зависит также от общего сопротивления движению воды в системе, а также и от схемы ее построения.



Циркуляция воды (теплоносителя) в такой системе обусловлена гравитационным давлением. Условиями возникновения такого давления являются разность температуры воды и взаимное расположение по высоте котла и приборов отопления (батарей и т.п.).

2 основные схемы отопления

Существует две схемы отопления:

  1. Однотрубная;
  2. Двухтрубная.

При монтаже отопления с естественной циркуляцией может быть задействовано несколько контуров, их ставят по одной из вышеперечисленных схем.

Контур с одной магистралью называют однотрубной. Самой элементарной моделью считается контур без применения радиаторов. Такая компоновка системы отопления стоит недорого, она проста в эксплуатации. Однотрубная схема (у которой присутствует вертикальная разводка) чаще всего используют в двухэтажных коттеджах.

Если одна труба применяется для горячей воды, а друга – для холодной, то это двухтрубная модель, она более популярна, но монтировать ее сложнее, также надо ставить дополнительную магистраль. Преимущества двухтрубной схемы:

  1. Температура распределяется боле равномерно.
  2. Легко рассчитывать тепло и скорость подачи воды.
  3. Несложно регулировать подачу тепла к каждой батарее.
  1. Температура распределяется боле равномерно.
  2. Легко рассчитывать тепло и скорость подачи воды.
  3. Несложно регулировать подачу тепла к каждой батарее.

С сухим ротором

Получил свое название в связи с особенностями конструкции. В теплоноситель погружена только крыльчатка, ротор находится в герметичном корпусе, его от жидкости отделяет несколько уплотнительных колец.

Устройство циркуляционного насоса с сухим ротором — во воде только крыльчатка

Данные аппараты имеют следующие свойства:

  • Имеют высокий КПД — порядка 80%. И это основной их плюс.
  • Требуют регулярного обслуживания. В процессе эксплуатации твердые частицы, содержащиеся в теплоносителе попадают на уплотнительные кольца, нарушая герметичность. Чтобы предотвратить разгерметизацию и необходимо обслуживание.
  • Срок эксплуатации порядка 3 лет.
  • При работе издают высокий уровень шумов.

Такой набор характеристик не очень подходит для установки в системах отопления частных домов. Основной их плюс — высокий КПД, а значит, меньший расход электроэнергии. Потому в больших сетях циркуляционные насосы с сухим ротором более экономичны, и там в основном и используются.

Устройство насоса с мокрым ротором — сухая только электрическая часть

Типы циркуляционных насосов.

Циркуляционные насосы имеют два типа размещения двигателя – сухой или мокрый. В первом варианте мотор расположен в отдельном сухом корпусе и с жидкостью контактируют только лопасти крыльчатки. Во втором, ротор находится в воде. Оба варианта имеют свои особенности, на каком именно остановить свой выбор, зависит в первую очередь от размера отопительной системы.

  • Сухой тип – применяется в крупных системах (крупные домохозяйства, коттеджные поселки, многоквартирные дома, промышленные постройки), так как обладает большим КПД около 80%, однако нуждается в периодическом обслуживании и имеет высокий шума.
  • Мокрый тип – используется в частном строительстве, КПД 50%, низкий уровень шума и не нуждается в обслуживании в течении всего срока службы (8-10 лет).

Параметры выбора циркуляционного насоса.

В принципе, задача циркуляционного насоса как можно лучше соответствовать двум требованиям: снабжать все радиаторы достаточным количеством воды для достижения заданной температуры в помещении и, в тоже время, осуществлять работу с максимальной энергоэффективностью.

При выборе этого оборудования необходимо учитывать следующие параметры:

  • Производительность, то есть объем жидкости, прокачиваемой агрегатом за час его работы
  • Высота столба воды, обеспечиваемая насосом
  • Максимальная температура охлаждающей жидкости
  • Диаметр труб в системе отопления (чаще всего это 32 или 25 мм) и размеры корпуса блока, чтобы он соответствовал предполагаемому месту монтажа.
  • Количество потребляемой энергии
  • Уровень шума
  • Возможность подключения ШИП контроллера.

Большинство насосов с мокрым ротором имеют ручное переключение 3-4 фиксированных режимов скорости вращения. Этого вполне достаточно для регулировки производительности системы частного дома. При увеличении мощности уменьшается разница температуры жидкости на входе и выходе, чем достигается равномерная температура всех тепловых приборов в холодное время. При малых теплопотерях, когда нет необходимости использовать оборудование на полную мощность – скорость вращения ротора уменьшают, за счет чего насос снижает потребление электричества. Также, регулировка мощности насоса позволяет использовать трубы меньшего диаметра, нивелируя гидравлическое сопротивление.

Петли теплых полов

Обычно теплоноситель подается в напольные контуры отдельным насосом, работающим в паре с подмешивающим клапаном. При этом максимальная протяженность петли не превышает 100 метров, фасонные детали отсутствуют. Местные сопротивления – термостатический вентиль коллектора и смесительный трехходовой (или 2-ходовой) клапан.

Для расчета вполне подходит предыдущий алгоритм:

  1. Выясняем количество контуров, максимальную длину трубы и общий расход теплоносителя через гребенку. Все вычисления по теплым полам мы подробно расписали в отдельной публикации.
  2. Берем самую длинную петлю и считаем по ней требуемое давление насосного агрегата, пользуясь приведенной выше формулой. Подставляем аналогичные значения R, L и Z.
  3. Подбираем насос для петель напольного обогрева по графику, представленному в паспорте изделия.
Читайте также:  Технология облицовки фасада керамогранитом

Пример. Возьмем тот же двухэтажный дом с тепловой нагрузкой 22 кВт и расходом воды 0.95 м³/ч, максимальная длина петли – 80 м. Значение R принимаем 0.015, Z – 2.2, тогда напор H = 0.015 х 80 х 2.2 = 2.64 м. Сопротивление магистрали не учитываем, поскольку котел оснащен собственным насосом. Значит, окончательное давление коллекторного агрегата – минимум 2.64 м.

Заметьте: увеличивая протяженность петель до 100 м, вы поднимаете планку давления насоса, что приведет к повышению расхода электроэнергии. Проверяем: H = 0.015 х 100 х 2.2 = 3.3 м. Рисуем на диаграмме соответствующую горизонтальную линию и выбираем любую модель, чей график размещен выше. Ближайший агрегат — Wilo Star-RS 25/6.


Просчитаем давление по нашему примеру. Длина L по габаритам здания равна (10 + 3 + 10) х 2 = 52 м, Z = 2.2. Потребный напор составит 0.015 х 52 х 2.2 = 1.716 ≈ 1.7 м. Прибавим запас 1 м на неучтенные сопротивления самого котла и дополнительного оборудования, получаем 2.7 м водяного столба.

Как выбрать циркуляционный насос

Основное назначение

Циркуляционный насос обеспечивает принудительную циркуляцию теплоносителя в замкнутой системе отопления. В конструкцию насоса входят:

  • металлический корпус,
  • керамический или стальной ротор,
  • роторный вал с крыльчаткой,
  • вращающий ротор и электродвигатель.

Установленный в систему отопления циркуляционный насос обеспечивает всасывание воды с одной стороны и ее нагнетание в другую сторону, которое обеспечивается работой крыльчатки и возникающей за счет этого центробежной силы. Основной задачей циркуляционного насоса является преодоление сопротивления, которое может встречаться на некоторых участках самой отопительной системы. Циркуляционный насос перекачивает теплоноситель внутри системы с постоянной скоростью, обеспечивая равномерный прогрев помещений. Использование принудительной циркуляции позволяет применять трубы меньших диаметров, управлять теплоотдачей, повышать качество системы отопления, делая ее элементом системы «умный дом».

Параметры выбора

  • Рабочая температура. Циркуляционный насос предназначен для системы отопления и должен выдерживать высокие температуры теплоносителя до 110 °С.
  • Напор или объем прохождения теплоносителя через котел за одну минуту – один из параметров при выборе насоса. Для его определения существует простое правило, приравнивающее мощность устройства к расходу воды.
    ПРИМЕР: при мощности котла 20 кВт объем прохождения теплоносителя за минуту – 20 л воды.
  • Теплоноситель. Насос должен работать на воде или других теплоносителях, применяемых в отопительных системах.
  • Расход теплоносителя рассчитывается для каждого из колец системы. Его достаточно просто рассчитать по указанному выше методу, если известны мощность котла и тип используемых отопительных радиаторов.
  • Следующим шагом будет расчет расхода теплоносителя в трубопроводе в зависимости от диаметра используемых труб.
    – Расход воды в трубах диаметром:
    ½ “ составляет 5,7 л/мин,
    1 “ – 30 л/мин,
    2 “ – 170 л/мин.
  • Скорость движения теплоносителя можно не рассчитывать, приняв ее величину равной 1,5 м за секунду.

ПРИМЕР: Вычисляется мощность насоса в зависимости от длины трубопровода. Для трубопровода длиной 10 м потребуется напор 0,6 м, следовательно, для 100-метровой отопительной системы потребуется насос, способный создать напор 6 м.

Маркировка

Рассмотрим маркировку 25–40 и 32–60 циркуляционных насосов для систем отопления

  • Первое число в маркировке 25 (32) означает диаметр внутренней резьбы присоединительных гаек насоса. Диаметр гаек выбирается в зависимости от диаметра труб отопления. В быту, как правило, два размера: 25 и 32.
  • Второе число 40 (60) – напор насоса. Оно означает максимальное давление, создаваемое насосом и измеряемое в дециметрах или метрах водяного столба: 40 (60) дм или, соответственно, 4 (6) м.

Типы циркуляционных насосов

Технические характеристики

Выбор циркуляционного насоса определяется площадью помещения, требуемым количеством тепла для его обогрева, температурой и типом теплоносителя, диаметром и типом труб. Для коттеджей и квартир чаще всего применяются насосы с мокрым ротором, устанавливаемые на трубопроводе, направляющем теплоноситель, прошедший через систему отопления в нагреватель, и имеющем более низкую температуру.

Маркировка циркуляционного насоса содержит данные о его присоединительном диаметре и максимальном напоре.

Количество необходимого тепла зависит от многих факторов – расположения объекта, его конструкции и т.д., но в среднем это примерно 1кВт (1000 Вт) на 10 м² площади. Такое количество тепла должно подаваться в систему извне или от установленного нагревателя (котла).
Для определения мощности насоса пользуются расчетными показателями производительности насоса (эквивалент 1 кВт), приравниваемого к подаче теплоносителя в 0,06 м³/ч.

ПРИМЕР: для отопления помещения в 200 м² необходим насос с подачей не менее 1,2 м³/ч. Это первый параметр. Чтобы определить необходимый напор при такой подаче, следует учесть, что для прокачки воды по трубе в 10 м необходим минимальный напор 0,6 м водяного столба. Поэтому необходимый минимальный напор получится после оценки длины труб системы. Для учета этажности здания необходимо добавить еще 2–4 м. Результат и будет требуемой величиной напора.

Эти две характеристики позволят сильно сузить диапазон выбора требуемых насосов. Применяя трубы с бóльшим диаметром, можно использовать насосы с меньшим напором, но с соответствующим присоединительным диаметром.

  • Один из важных факторов – наличие у насоса регулировки скорости вращения вала. Нерегулируемые модели стоят дешевле. Регулируемые – обеспечивают не только энерго-, но и ресурсосбережение самого насоса. Регулируемые насосы могут иметь шаговое переключение и обеспечивать 2-, 3- или 4-скоростной режим ручного переключения или плавное переключение скорости, а также отслеживать температуру теплоносителя, легко встраиваясь в «умные системы».

Маркировка

Популярные производители и модели

Рассмотрим наиболее известных производителей циркуляционных насосов и их моделей:

WILO TOP-S 30/10 EM PN6/10

Это массивное устройство с чугунным корпусом и высокой производительностью — до 12 м3/час. Напор тоже немалый — обеспечивает подъем теплоносителя на 10 м. Средняя точка на графике дает подъем 6 м3 на 6 м. Режим работы трехскоростной. Недостатками этого прибора считают большую массу и вес, а также увеличенный пусковой ток.

BELAMOS BRS 25 / 8G

Российский бренд, но производится в странах Юго=Восточной Азии. При этом, соотношение цены и качества вполне удачное. Максимальная производительность — 5,28 м3/ч, а напор — 8 м. Внешне этот аппарат является полной копией немецкого Grundfos UPS, хотя по характеристикам он несколько уступает оригиналу.

Grundfos UPS 25-40 180

Оптимальный вариант для отопления частного дома средней величины. Мощность — 45 Вт, производительность — 2,93 м3/ч, напор — 4м. Конструкция мокрого типа, но качественно изолирована о протечек. Пользователи отмечают низкий уровень шума во время работы, качественную сборку, долговечность аппарата.

Aquario AC 254-180

Хороший вариант для частного дома с двухтрубной отопительной системой. Производительность составляет 1,8 м3/ч, что на первый взгляд маловато. Однако, для небольших систем этот насос — оптимальный вариант, который непросто отыскать. Корпус чугунный, мощность составляет 48 Вт. Низкая стоимость устройства является дополнительным плюсом.

Wilo Star-RS 30/6-180

Удачно подобранные характеристики этого насоса позволяют установить его в подвале двухэтажного дома. Он обеспечивает 5,5 м при производительности 3,5 м3/ч. Это сочетание дает возможность работать в системе, обслуживающей большую площадь. Потребляемая мощность — 84 Вт, что многовато, но низкая стоимость прибора уравновешивает этот недостаток.

Grundfos UPS 32-80

Этот образец мощного и прочного насоса способен перекачать 11 м3 жидкости в час. Корпус бронзовый, устойчивый ко всем нагрузкам, как механическим, так и к температурным. Напор 7,5 м позволяет работать даже в трехэтажных домах. Аппарат дорогой, но, по утверждениям владельцев, вполне соответствует этой стоимости.

Wilo Yonos PICO 25/1-6

Этот прибор оснащен электронным блоком управления. Напор — до 6 м, производительность — 3,7 м3/ч. Это не слишком много, но для двухэтажного дома среднего размера вполне подойдет. Имеется функция автоматического удаления воздуха, весьма полезная в частных отопительных системах. Дополнительный плюс — удобный способ подключения питания. Используется герметизированная колодка, которая просто защелкивается в гнезде.

Перечислять модели циркуляционных насосов можно еще долго, поскольку число производителей постоянно увеличивается. При этом, наиболее популярными изготовителями являются именно рассмотренные фирмы. Выбирая подходящий образец, рекомендуется присмотреться к изделиям этих компаний.


Wilo Yonos PICO 25/1-6

Особенности современной системы отопления загородного дома

В зависимости от региона, отопительный период в нашей стране в среднем длится 6-7 месяцев. Т.к. цены на энергоносители всё время растут, среди владельцев загородных коттеджей увеличивается интерес к строительству энергоэффективных домов, т.е. зданий, где все энергопотери сведены к минимуму. Практика показывает, что при грамотном подходе к процессу возведения такого дома (основанном на теплотехническом расчёте) средства, потраченные на его строительство, возвращаются в виде снижения затрат на оплату энергоносителей.

Но зачастую при этом из вида упускается один важный момент — возведение энергоэффективного, а значит, экономичного дома, требует решения целого комплекса задач. Помимо утепления, монтажа системы вентиляции с рекуператором, для минимизации расходов нужно повысить эффективность работы системы отопления.

Отопительная «инженерка» загородного коттеджа включает в себя самое разнообразное оборудование. Это — твердотопливные, газовые, электрические или дизельные котлы, система тёплого пола или настенные радиаторы с термостатическими головками и т.д. Поэтому отопительная система загородного дома оснащается циркуляционными насосами.

Зачастую в отопительную систему устанавливают обычные (нерегулируемые) циркуляционные насосы, всё время работающие на постоянной скорости оборотов или имеющие ступенчатую регулировку напора теплоносителя в 2-3 диапазонах.

Такие насосы могут иметь устаревшую конструкцию и неэффективно работающий двигатель. Это приводит к значительному перерасходу денежных средств. Чтобы этого избежать, систему отопления можно модернизировать, установив в неё «умный» циркуляционный насос.

Например, при внезапном потеплении (это нередко происходит среди зимы) пользователь понижает температуру теплоносителя и его напор, т.к. от отопительных приборов не требуется повышенная теплоотдача. Также от системы отопления не требуется максимальная эффективность работы в начале и в конце отопительного сезона, когда на улице только установилась прохладная погода, а сильные морозы ещё не пришли. При смене дня и ночи, при отъезде из дома на работу днём, когда с помощью термостатических головок, установленных на радиаторах, можно понизить температуру в помещениях и, тем самым, сэкономить средства на отоплении.

Подбираем технические характеристики

Начнем с подбора технических характеристик. Для профессионального расчета есть куча формул, но для подбора насоса для системы отопления частного дома или квартиры можно обойтись усредненными нормами:

  • Производительность насоса принимают равной мощности установленного котла отопления. То есть, если котел стоит на 35 кВт, то насос подбирают с производительностью 35 л/мин.
  • Далее надо рассчитать требуемый напор (высоту подъема). В среднем считается, что для 10 метров трубопровода должен быть напор насоса 0,6 м. Чтобы определить, какой напор циркуляционного насоса нужен для системы, надо ее общую длину поделить на 10 и умножить на 0,6 м/с. Например, если общая длинна системы отопления, например, 80 м, требуемый напор будет: 0,6 м * 8 = 4,8 м. То есть в технических характеристиках напор не должен быть меньше.

Подобрать циркуляционный насос для системы отопления можно самостоятельно

Выбрать циркуляционный насос для отопления следуя этим правилам несложно. Расчеты элементарные. Но надо сказать, что данные цифры — среднестатистические. Если ваш дом в каком-то пункте сильно отличается от «средних показателей», надо делать поправки либо в сторону увеличения, либо в сторону уменьшения технических характеристик. Например, вы хорошо утеплили дом, мощность купленного ранее котла оказалась избыточной. В этом случае имеет смысл брать помпу с меньшей производительностью. В обратной ситуации — в доме в сильные холода зябко — можно поставить более производительный циркуляционник. Он временно решит проблему (в дальнейшем надо или утеплять или менять котел).


Выбрать циркуляционный насос надо сначала по характеристикам

Добавить комментарий